Gibbs adsorption isotherm combined with Monte Carlo sampling to see action of cosolutes on protein folding.

نویسندگان

  • Daniel Harries
  • V Adrian Parsegian
چکیده

Driven by conditions set by smaller solutes, proteins fold and unfold. Experimentally, these conditions are stated as intensive variables--pH and other chemical potentials--as though small solutes were infinite resources that come at an externally varied free energy cost. Computationally, the finite spaces of simulation allow only fixed numbers of these solutes. By combining the analytic Gibbs adsorption isotherm with the computational Monte Carlo sampling of polymer configurations, we have been able to overcome an inherent limitation of computer simulation. The idea is to compute analytically the free energy changes wrought by solutes on each particular configuration. Then numerical computation is needed only to sample the set of configurations as efficiently as when no bathing solute is present. For illustration, the procedure is applied to an idealized two-dimensional heteropolymer to yield lessons about the effect of cosolutes on protein stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo simulations of the HP model (the "Ising model" of protein folding)

Using Wang-Landau sampling with suitable Monte Carlo trial moves (pull moves and bond-rebridging moves combined) we have determined the density of states and thermodynamic properties for a short sequence of the HP protein model. For free chains these proteins are known to first undergo a collapse "transition" to a globule state followed by a second "transition" into a native state. When placed ...

متن کامل

Energy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations

The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

On the inner workings of Monte Carlo codes

We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal–organic frameworks. Conventional MC is discussed and compared to advanced techniques such as reactive MC, configurational-bias Monte Carlo and continuous fractional MC. The latter technique overcomes t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proteins

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 2004